

This discussion paper is/has been under review for the journal Hydrology and Earth System Sciences (HESS). Please refer to the corresponding final paper in HESS if available.

Reservoir computing as an alternative to traditional artificial neural networks in rainfall-runoff modelling

N. J. de Vos

Prof. Kamerlingh Onneslaan 188, 3112VM Schiedam, The Netherlands

Received: 1 April 2012 – Accepted: 25 April 2012 – Published: 11 May 2012

Correspondence to: N. J. de Vos (njdevos@gmail.com)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Discussion Paper | Discussion Paper

N. J. de Vos

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

◀

▶

◀

▶

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

Despite theoretical benefits of recurrent artificial neural networks over their feedforward counterparts, it is still unclear whether the former offer practical advantages as rainfall-runoff models. The main drawback of recurrent networks is the increased complexity of the training procedure due to their architecture. This work uses recently introduced, conceptually simple reservoir computing models for one-day-ahead forecasts on twelve river basins in the Eastern United States, and compares them to a variety of traditional feedforward and recurrent models. Two modifications on the reservoir computing models are made to increase the hydrologically relevant information content of their internal state. The results show that the reservoir computing networks outperform feedforward networks and are competitive with state-of-the-art recurrent networks, across a range of performance measures. This, along with their simplicity and ease of training, suggests that reservoir computing models can be considered promising alternatives to traditional artificial neural networks in rainfall-runoff modelling.

15 1 Motivation

The development of Rainfall-Runoff (R-R) models that make accurate and reliable predictions of river streamflow remains among the most important and difficult tasks in hydrology. A plethora of methods exist, such as the popular conceptual models which use simplified descriptions of physical processes. Examples of this approach are the HBV 20 model (Lindström et al., 1997), TOPMODEL (Beven et al., 1995), and the Sacramento soil moisture accounting model (Burnash, 1995). Because of their flexibility and ease of use, data-driven methods based on time series analysis, or, more recently, machine learning methods such as Artificial Neural Networks (ANNs) are increasingly considered as alternatives (e.g. Hsu et al., 1995; Shamseldin, 1997; Campolo et al., 1999; 25 Abrahart and See, 2000; Jain and Srinivasulu, 2004; de Vos and Rientjes, 2008b). Although many investigations of ANNs suggested good performance, their strongly

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

empirical, “black-box” nature limits possible applications, and has raised concerns regarding their reliability and validity as hydrological models (e.g. Cunge, 2003; de Vos and Rientjes, 2005).

Most research on ANNs as R-R models has focused on so-called feedforward ANNs, which perform a static mapping between model input and output. In order to represent the memory of the system in feedforward ANNs, dynamical properties are commonly explicitly modelled by using tapped-delay lines on input variables so that the input space is expanded to a certain time window. Recurrent ANNs, on the other hand, have cyclical connections in the structure of the network that allow an implicit, more parsimonious modelling of dynamical properties. They implement dynamical systems capable of representing and encoding deeply hidden states in which a network’s output depends on an arbitrary number of previous inputs, which is why their temporal representation capabilities can be better than those of feedforward ANNs with tapped-delay lines (Saad et al., 1998). Since river basins are dynamic systems, such capabilities seem to give recurrent ANNs a significant advantage over feedforward ANNs in representing a basin’s hydrological state. Indeed they have been successfully tested as R-R models by, for example, Hsu et al. (1997), Coulibaly et al. (2000), Chang et al. (2002) and Chiang et al. (2004), but the number of applications using feedforward ANNs dwarfs those with recurrent ANNs. The main reason for this is that recurrency in ANNs causes increased complexity of the training procedure as a result of the cyclical network connections, and subsequent convergence problems for training algorithms (Atiya and Parlos, 2000; Lukoševičius and Jaeger, 2009). As such, it is still not fully clear whether recurrent ANNs, despite theoretical benefits, offer practical advantages over feedforward ANNs with tapped-delay lines in R-R modelling.

Reservoir Computing (RC) has recently been introduced as an alternative to traditional recurrent ANNs (Jaeger, 2001). RC commonly involves (1) the generation of a non-adaptable recurrent ANN whose state maintains a non-linear transformation of its input history, and (2) the training of a non-recurrent, usually linear, model that extracts the desired response from the reservoir’s state. The training approach of RC

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

methods can therefore be notably simpler and faster than the ones traditionally applied to recurrent ANNs. However, it requires that enough process information is contained in the reservoir state for the linear method to extract. RC methods has attracted a lot of interest thanks to their fast training times and good performance compared to traditional methods of system identification, prediction and classification (Hammer et al., 2009; Lukoševičius and Jaeger, 2009). The RC field is still very young, though, and research on optimal reservoir design and readout methods is ongoing. Very few applications of RC in hydrology have been reported thus far. One of them is Coulibaly (2010), who used a RC model for forecasting monthly water levels of four North-American Great Lakes. It was shown that this model generally outperformed both a standard recurrent ANN and a Bayesian neural network model.

This study's main aim is to find out if RC R-R models can be considered valid alternatives to feedforward and traditional recurrent ANN approaches. The performance of such models is therefore evaluated for one-day-ahead forecasts on a variety of meso-scale river basins. Secondly, several reservoir design aspects of RC models are investigated in order to optimize the hydrologically relevant information contained in the reservoir state, which allows for more accurate and reliable R-R models.

Section 2 briefly reviews feedforward and traditional recurrent ANN models and their training methods, after which a short introduction to RC is given. Section 3 presents the data set and model settings used in this work. Results of the experiments are presented and discussed in Sect. 4, and conclusions are drawn in Sect. 5.

2 Artificial neural networks

2.1 Feedforward versus recurrent networks

As shown in Fig. 1a, feedforward ANNs only have forward network connections between the network input(s), the hidden layer(s) of neurons and the output neuron(s).

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

As such, they can be thought to perform a static function mapping between an input \mathbf{U} and an output \mathbf{Y} (see Eqs. 1 and 2).

$$y_k = \sum_{j=1}^J x_j w_{jk} + b_k \quad (1)$$

$$x_j = f \left(\sum_{i=1}^I u_i w_{ij} + b_j \right) \quad (2)$$

where J and I are the number of hidden neurons and inputs, respectively, x is the so-called activation value of a hidden neuron, b is a bias value, w is a connection weight, and f is a non-linear transfer function.

In order to allow system memory to be incorporated into these static ANN models, tapped-delay lines are commonly used, which result in a window of historical values of the variable as input signals (e.g. $P_t, P_{t-1}, \dots, P_{t-s}$). By increasing s , the size of the input vector and therefore the number of connection weights in the ANN are increased, making the model less parsimonious.

Recurrent ANNs represent dynamical systems and are able to model more complex temporal relationships. Figure 1b, c shows the two types of traditional recurrent ANN models that are tested in this work, the Elman network (Elman, 1990) and the fully recurrent network (Williams and Zipser, 1989). Both networks have cyclical connections in the structure. The Elman network has (besides feedforward connections) connections from the hidden neurons that loop back to themselves, fully connected, with a time step delay. The equation for the activation function thus becomes:

$$x_j^t = f \left(\sum_{i=1}^I u_i w_{ij} + \sum_{k=1}^K x_k^{t-1} w_{kj} + b_j \right). \quad (3)$$

In the Williams-Zipser fully recurrent ANN, the input connects directly to all hidden and output neurons. The total of hidden and output neurons is fully interconnected with a time step delay.

2.2 Training methods

A common approach to ANN training in function approximation applications such as R-R modelling is to use supervised training. Sample input and output data are presented to the network, after which optimization algorithms attempt to minimize the error in network output by adjusting the matrix of network weights \mathbf{W} .

5 The most popular training method for feedforward ANNs is the standard backpropagation (BP) algorithm (Rumelhart and McClelland, 1986), which uses a first-order gradient-descent method to find optimal weight values. The objective function $E(\mathbf{W})$ is calculated after which the BP algorithm applies a correction to the weights in the network:

$$10 \quad \Delta w_{ji} = -\eta \frac{\partial E}{\partial w_{ji}} \quad (4)$$

where η is the learning rate of the BP algorithm. The weight updating corresponds to moving along the error surface $E(\mathbf{W})$ in search for a minimum. Weight updates can be performed every time a single training pattern has been presented (i.e. online mode), or based on the mean error over all training data (i.e. batch mode).

15 More sophisticated alternatives to the BP algorithm, such as the Conjugate Gradient (CG) algorithm and the second-order gradient-descent Levenberg-Marquardt (LM) algorithm, have been found to commonly outperform in terms of accuracy and convergence speed (e.g. Møller, 1993; Hagan and Menhaj, 1994; de Vos and Rientjes, 2005). In the LM algorithm, weight updates are performed according to:

$$20 \quad \Delta \mathbf{w} = -[\mathbf{H} + \mu \mathbf{I}]^{-1} \mathbf{J}^T \mathbf{e} \quad (5)$$

where μ is a (variable) learning rate, \mathbf{J} the Jacobian matrix that contains first derivatives of the network errors with respect to the weights, \mathbf{e} a vector of network errors, and \mathbf{H} an approximation of the Hessian matrix, $\mathbf{H} = \mathbf{J}^T \mathbf{J}$. More information can be found in (Hagan and Menhaj, 1994).

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Recurrent ANN training has also traditionally relied on gradient-based methods. The most commonly used algorithm, Backpropagation Through Time (BPTT) is an extension of the standard BP method (see Werbos, 1990). BPTT also uses a first-order gradient approach to weight correction. The recurrent connections inside the network are dealt with by unfolding time iterations of the network into layers, creating an equivalent feedforward network (Atiya and Parlos, 2000). Like BP, weight updates can be performed in batch mode or online mode. Using the latter, the network unfolding is limited to a truncation depth to keep the method computationally feasible (Haykin, 1999).

The Extended Kalman Filter (EKF) is a well-known method for non-linear state estimation of dynamic systems that also has been successfully used for recurrent ANN training (Puskorius and Feldkamp, 1994; Sum et al., 1998). Following the notation in (Haykin, 2001), the dynamics of the recurrent network are modelled as

$$\begin{aligned} \mathbf{W}_{t+1} &= \mathbf{W}_t + \boldsymbol{\omega}_t \\ \mathbf{Y}_t &= \mathbf{h}_t(\mathbf{W}_t, \mathbf{U}_t, \mathbf{v}_{t-1}) + \mathbf{v}_t \end{aligned} \quad (6)$$

where \mathbf{W} are the network weights, \mathbf{U} the input, $\boldsymbol{\omega}$ and \mathbf{v} are Gaussian uncorrelated noises representing process and measurement noise, respectively, and \mathbf{Y} is the output, which is based on a time-dependent function \mathbf{h}_t . The task of the EKF now becomes to estimate the perfect weights, given a series of observed outputs. This is done at each time step through so-called measurement updates of the EKF procedure:

$$\begin{aligned} \mathbf{K}_t &= \mathbf{P}_t \mathbf{H}_t \left(\frac{1}{\eta} \mathbf{I} + \mathbf{H}_t^T \mathbf{P}_t \mathbf{H}_t + \mathbf{R}_t \right)^{-1} \\ \mathbf{W}_{t+1} &= \mathbf{W}_t + \mathbf{K}_t \xi_t \\ \mathbf{P}_{t+1} &= \mathbf{P}_t - \mathbf{K}_t \mathbf{H}_t^T \mathbf{P}_t + \mathbf{Q}_t \end{aligned} \quad (7)$$

where \mathbf{K} is called the Kalman gain, \mathbf{P} is the error covariance matrix of the weights, \mathbf{Q} is the covariance matrix of the noise $\boldsymbol{\omega}$, \mathbf{R} is the covariance matrix of the noise \mathbf{v} , η is a learning rate parameter, ξ is the difference between observed output and

output calculated from the previous weight estimate, and \mathbf{H} contains the derivatives of the network output with respect to the weights. The latter can be calculated using the truncated BPTT procedure mentioned above.

Traditional RNN training using BPTT, or even the sophisticated EKF, suffers from several shortcomings related to the combination of model complexity and gradient-based optimization (after Lukoševičius and Jaeger, 2009):

- Gradual weight updates during the training procedure may drive recurrent networks through bifurcations where gradient information becomes useless (Doya, 1992).
- Weight updates can be computationally expensive and many updates may be necessary.
- Relationships over long-range memory are hard to learn, because the necessary gradient information exponentially dissolves over time (Bengio et al., 1994).
- Training algorithms require skill and experience to apply, since their complexity requires a number of global control settings that are not easily optimized.

2.3 Reservoir computing

Reservoir Computing (RC) refers to a group of recurrent ANN methods that shares certain specific aspects of network design and training that are notably different from traditional methods. Its primary examples are the independently proposed but recently unified (see Verstraeten et al., 2007) Liquid State Machines (Maass et al., 2002), Echo State Networks (ESNs) (Jaeger, 2001; Jaeger and Haas, 2004) and the Backpropagation-Decorrelation learning rule (Steil, 2004). In this work ESNs are used, which are the simplest, most commonly applied RC methods.

RC involves (1) the generation of the so-called reservoir, a non-adaptable recurrent ANN whose state maintains a non-linear transformation of its input history, and (2) the training of a non-recurrent, usually linear, readout that extracts the desired response

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

regression (or: Tikhonov regularization), which is based on the idea of adding an additional cost term to the least squares optimization so that the norm of the weights is kept small. It has been proven successful in improving robustness and generalization of RC networks (Wyffels et al., 2008). In ridge regression, weight values are determined according to

$$W = YX^T(XX^T + \alpha^2 I)^{-1} \quad (8)$$

where Y is the target output, X the reservoir state, and α a regularization parameter.

RC methods recently have attracted a lot of research interest because they overcome several of the training problems of traditional recurrent ANN methods by separating the simulation of models dynamics and the training of the network. Meanwhile, they offer excellent modelling accuracy (see review by Lukoševičius and Jaeger, 2009). Additionally, RC methods seem to be biologically plausible neural network models (especially LSMS), and they are easily extensible for additional outputs. However, significant research challenges concerning richness of reservoir dynamics, optimal readouts and (both general and task-specific) model design guidelines remain.

3 Experimental setup

3.1 Data

The model simulations in this work are done on the Model Parameter Estimation Experiment (MOPEX) data set as presented in Duan et al. (2006). This data set includes daily precipitation, potential evaporation, and discharge data for twelve river basins in the Eastern United States. Table 1 shows geographical, hydrometeorological and land surface characteristics of these basins. The skewness of the discharge data is shown in the last column. High skewness values indicate occurrence of extreme high flow events.

The data were split up in training (1979–1990, with the first year for model spin-up), cross-validation (1991–1998) and test (1960–1979) periods.

3.2 Model input and output

The data used as inputs to the ANN models are time series of daily precipitation (P),
5 potential evaporation (E), discharge (Q), and the 20-day simple moving average of the precipitation time series (P_{ma}). The latter serves as a crude indicator of the wetness in the basin. Model output is a one-day-ahead forecast of Q .

As explained in Sect. 2, the Elman, fully recurrent and RC networks use only the latest values of the P , E , Q , and P_{ma} data as input. Two feedforward models were
10 constructed, one of which also uses only these latest values of the 4 variables, and the other used tapped-delay lines. In order to determine the optimal input windows for these tapped-delay lines, linear correlation and average mutual information between the input and output time series were calculated. The results suggested that, for all basins, the information content with respect to Q at time $t + 1$ is significantly high at
15 time step t_0 for E and P_{ma} , and at time steps t_0 through $t - 2$ for P and Q . This results in a total of 8 inputs, as shown in Table 2.

All input and output data were standardized to have a mean of 0 and a standard deviation of 1, and the input data were pre-processed using principal component analysis.

3.3 Training settings

20 The feedforward ANNs were trained in batch mode by the LM algorithm. Standard backpropagation was tested but not presented here because it performed very poorly compared to the LM algorithm, most likely due to the first-order gradient algorithm getting stuck in local optima. The Elman and fully recurrent ANNs were trained online by both truncated BPTT and EKF (with truncated BPTT for determining the necessary
25 gradients). BPTT used a window size of 10 and a learning rate of 0.005. For EKF, a learning rate η of 1 was used, and the covariance matrix \mathbf{P} was initialized with values

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

of 1000 on the diagonal and 0 elsewhere. The initial matrices for \mathbf{Q} and \mathbf{R} used values of 10^{-4} and 200, respectively. Before training, feedforward, Elman and fully-recurrent ANN weights were drawn randomly from a uniform distribution where $w \in [-0.25, 0.25]$. The RC network readouts were trained in batch mode by ridge regression (Eq. 8).

5 A potential pitfall of ANN training is overfitting, which means that the network has learned the intricacies of the training data, including noise, and thereby has lost its ability to generalize beyond the specifics of this data. In order to improve their generalization capability, training of the feedforward, Elman and fully recurrent models used the often-applied early-stopping approach, where weight adaptation is stopped when the 10 error on the cross-validation data starts to increase significantly. The RC models, on the other hand, rely on regularization by the ridge regression method for good generalization ability. Using trial-and-error testing, a good value of the regularization parameter α (see Eq. 8) was found to be 0.1.

15 The objective function used for training all ANN models is the Mean Squared Error (MSE) (Eq. 9).

$$\text{MSE} = \frac{1}{T} \sum_{t=1}^T (\hat{Q}_t - Q_t)^2 \quad (9)$$

where \hat{Q} is the estimated and Q the observed discharge value.

3.4 Performance evaluation

20 Model performance is evaluated using the well-known Nash-Sutcliffe coefficient of efficiency (CE, Eq. 10), the MSE over the lowest 20 % of observed flow values (MSE_{p20}), and the Mean Squared Derivative Error (MSDE, Eq. 11). The CE is a scaled variation of the MSE and stresses fit on peak flows, whereas the MSE_{p20} focuses on low flows. The MSDE penalizes errors in hydrograph shape, especially timing errors and noise (de Vos and Rientjes, 2008b).

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀ ▶	
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

$$CE = 1 - \frac{\sum_{t=1}^T (\hat{Q}_t - Q_t)^2}{\sum_{t=1}^T (Q_t - \bar{Q}_t)^2} \quad (10)$$

where \bar{Q} is the mean discharge value.

$$MSDE = \frac{1}{T} \sum_{t=1}^T ((\hat{Q}_t - \hat{Q}_{t-1}) - (Q_t - Q_{t-1}))^2. \quad (11)$$

As a baseline reference for comparing model performance, a persistence model and

5 a multiple linear regression model were used. The persistence model merely copies the last known value of variable Q as its prediction for Q at $t + 1$, creating a lagged copy of the original time series. Comparison with this simple model allows for a more strict and appropriate evaluation of ANN model performance because ANN R-R models have been shown to be prone to the problem of merely using the last known discharge value

10 in their prediction (Anctil et al., 2004; de Vos and Rientjes, 2005, 2008a). The multiple linear regression model is based on the same 8 inputs used for the feedforward model with tapped-delay lines (see Table 2) and is also calibrated using ridge regression.

3.5 Artificial neural network design

Through a trial-and-error approach, 2 and 3 neurons in a single hidden layer were

15 found to be optimal for the feedforward ANNs without and with tapped-delay lines, respectively. Also, bias signals are used in the hidden layer and output layer, bringing the total number of weights to be trained to 13 and 31. The optimal number of hidden neurons for the Elman and fully recurrent Williams-Zipser ANNs was determined to be 4, resulting in 41 and 50 weights, respectively (including bias signals). All ANNs in this study used the hyperbolic tangent transfer function in the hidden neurons and

20

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

a linear function in the output neurons, except for the fully recurrent ANN which requires hyperbolic tangent transfer function in all its neurons.

Initial tests suggested that the RC networks performed best if the input signals, a bias signal with value 1, and the reservoir were all fully and directly connected to the read-out (as shown in the example in Fig. 1d). The input and bias were also fully connected to the reservoir. No feedback connections from output to reservoir were used, since this seemed to deteriorate performance. The weights of the input-to-reservoir connections determine how strongly a reservoir is excited by input, and thereby the degree of non-linearity of its response. Here these weights were drawn randomly from a uniform distribution where $w \in [-0.1, 0.1]$. All other connection weights were drawn from a normal distribution. The common practice of using a sparsely and randomly connected reservoir is followed, by randomly allowing 20 % of all connections to be active.

The size of the reservoir determines to a large degree the capacity of a network to learn complex dynamics with reasonable accuracy. Additionally, the spectral radius of the reservoir weights controls reservoir dynamics and therefore is an important setting for a RC model (Jaeger, 2002). Figures 2 and 3 show training and cross-validation performance, respectively, over a range of values for both parameters. The results show that large reservoirs, especially in combination with large spectral radii, fit the training data best, generally at the expense of the cross-validation performance. This is an indication that RC models can be overfitted to the training data (despite regularization by the ridge regression procedure). A moderate reservoir size of 200 and spectral radius of 0.6 were chosen for further simulations to avoid such problems. Although ignored here in order to allow fair comparison with other ANNs, there are sometimes significant differences between the optimal parameter values for each of the basins, indicating different system dynamics, complexities, and degrees of overfitting.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

4 Results and discussion

4.1 Model comparison

Figures 3 and 4 show the CE for the training and test data, respectively, for all models mentioned in Table 2. The overall performance of all ANNs is quite good, judging from the comparison with the persistence model (PM) and multiple linear regression (LIN) benchmark models and the relatively high range of CE values (cf. the performances of various conceptual models in Clark et al. (2008) and Duan et al. (2006), who use the same data set). Moreover, results are largely consistent between the training and test data, which means that the models have largely kept their ability to generalize and are not significantly overfitted. Some river basins (especially B11 and B12) seem to be difficult to model, judging from the low performance of the PM and LIN models. This may be because these catchments are relatively dry (see Table 1) and suffer more from flash floods (see large skewness of the discharge series in Table 1). Additionally, extrapolation issues arise, specifically in basins B2, B3 and B11. These all have one extreme event occur in the test data that falls significantly outside the range for which the models have been trained, and that attributes significantly to a lower CE.

The feedforward ANNs both generally perform well and did not require a lot of computational effort. Their non-linearity proves to have added value over the LIN model. However, their spread in performance is often large, which is likely due to the LM algorithm getting stuck in local optima. The tapped-delay lines of the FF_{TDL} network help performance on several basins (especially B6 and B10), while performance on others largely stays the same.

The BPTT training algorithm shows poor performance on most basins, both for the Elman and fully recurrent ANNs. This algorithm was also found to be the slowest of all algorithms tested. These results confirm the drawbacks of gradient methods for recurrent ANNs, as discussed in Sect. 2.2. EKF, on the other hand proves to be a powerful training method that generally allows EL_{EKF} and WZ_{EKF} to utilize their recurrent architectures and outperform the feedforward networks. Fully-recurrent ANN architectures

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

almost always give better results than Elman architectures, indicating that their added complexity is warranted.

WZ_{EKF} consistently outperforms FF_{TDL} (except on basin B11, which is due to a single extreme event), suggesting that recurrent ANNs are better models for dealing with system dynamics than feedforward ANNs with tapped-delay lines. However, WZ_{EKF} takes significantly more training time, and the EKF algorithm needs a lot of settings to be tweaked.

The RC_{ESN} model often does not match the performance of the feedforward models, let alone that of WZ_{EKF}. The shortcomings of the model that cause this are addressed below. Despite randomness in its reservoir construction, RC_{ESN} performance is more consistent than any other model. Computational effort was higher than the feedforward ANNs, due to the simulation of the reservoir, but significantly less than the other recurrent models, thanks to the fast ridge regression training procedure.

Figures 6 and 7, respectively show the MSE_{p20} and MSDE performance for the test data, allowing for a more rigorous evaluation of the various models. Both fits on low flow (as judged from the MSE_{p20} values) and hydrograph shape (as judged from the MSDE values) largely confirm the CE results, indicating reliability of its findings. However, there seems to be an increased spread in results, which is a result of models focusing on the objective function (i.e. the MSE) at the cost of model realism as reflected by deterioration of other performance measures. The RC_{ESN} model suffers least from this, perhaps because of the simplicity of its training procedure.

For some models or algorithms there seems to be a trade-off between performance measures. The most clear example of this is the performance of BPTT which sometimes scores very well on MSE_{p20}. Apparently, the BPTT algorithms does find its way to realistic optima that fit low flow well, but is unable to fine-tune to also fit the more challenging peak flows.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

4.2 Improving reservoir instantaneous non-linear capacity

Lukoševičius (2007) and Lukoševičius and Jaeger (2009) have pointed out that the traditional ESN architecture can suffer from an inability to produce a non-linear and instantaneous mapping from input to output. Feedforward, Elman and fully-recurrent 5 ANNs all have such ability thanks to feedforward connections through one or more hidden layers. Traditional ESN output, however, is a linear combination of model input and reservoir state. Although a reservoir allows for non-linear transformations of the input, this signal is mixed with previous values of the reservoir internal state. In the meso- 10 scale catchments and for a forecast lead time of one day, the ANNs get most of their information for $Q(t+1)$ from $Q(t)$ and $P(t)$, as underlined by the good performance of the FF model. RC_{ESN} 's relatively poor performance therefore seems to be attributable 15 to the lack of a sufficiently non-linear instantaneous mapping of these variables.

A possible solution to this problem was introduced by Lukoševičius (2007) in the form of Layered Echo State Networks (LESNs). An LSN's reservoir is divided into L 20 layers with roughly the same amount of neurons, and each time step it is updated layer by layer. Figure 8 shows the organization of layers and connections inside a LSN, where the thin lines depict recurrent connections and thick lines feedforward connections (grey for input-to-reservoir and black for inter-layer connections). At each time 25 step, the activation values of the neurons in layer 1 are calculated first, based on the input signals and the delayed recurrent signals from all neurons (i.e. exactly like in a regular ESN). Subsequent layers' activation values are calculated from the input, all previous layers' present activation values and all recurrent signals. In this way, LSNs attempts to combine the benefits of feedforward and recurrent connections by allowing the input signals to propagate forward through multiple layers of neurons during a single time step. Increasing L enables more complex instantaneous transformation at the cost of reduced memory capacity.

By training LSNs with a range of settings for L and evaluating the cross-validation performance, the optimal number of layers was found to be 2. This low number is not

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

surprising given that studies on feedforward ANN R-R have commonly found that using only a single hidden network layer yielded the best results (ASCE Task Committee on Application of Artificial Neural Networks in Hydrology, 2000).

5 Performance of the LESN model with 2 layers (RC_{LESN}) is also shown in Figs. 4 to 7. It clearly outperforms RC_{ESN} on both training and test data, proving that the addition of instantaneous non-linear capabilities is a valuable one. The model also often outperforms the WZ_{EKF} model in terms of all performance measures. Moreover, judging from the competitive and low-spread values for MSE_{p20} and $MSDE$, RC_{LESN} is the most consistent and realistic of the models tested.

10 4.3 Improving reservoir dynamics

Ever since the introduction of ESNs, leaky-integrator neurons were suggested for allowing a reservoir to represent slower dynamics (Jaeger, 2001). Leaky-integrator neurons apply a low-pass filter in the form of an exponential moving average to its activation values, as shown in Eq. (12) (cf. Eq. 3). The coefficient $c \in [0, 1]$ is the decay rate, for 15 which a value of 1 results in a regular neuron.

$$x_j^t = (1 - c)x_j^{t-1} + f \left(\sum_{i=1}^I u_i w_{ij} + \sum_{k=1}^K x_k^{t-1} w_{kj} + b_j \right) \quad (12)$$

20 The inclusion of slower dynamics in the reservoir using leaky-integrator neurons could be beneficial to a RC model, considering the broad range of time scales on which hydrological processes take place. Equation (12) was therefore tested on the recurrent connections of the LESNs (but not the feedforward connections, as not to reduce their instantaneous non-linear capabilities). Initial tests showed that good values for the coefficient c vary between basins due to differences in hydrometeorological drivers and basin characteristics. Therefore, in order to encompass a range of possible system dynamics, the 100 neurons of each of the layers of the LESN were assigned 25 coefficients that were evenly distributed between 0.01 and 1.

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

The results of this so-called RC_{LESN-L} model (see Figs. 4 to 7), show that the leaky-integrator neurons are moderately successful in increasing the information content of the reservoir. Performance in terms of CE commonly slightly improved, and the MSE_{p20} and MSDE values are consistently lower. The smoothing function of the leaky-integrator neurons seems to make RC_{LESN-L} a more reliable model than the RC_{LESN} model.

5 Conclusions

Recurrent ANNs can theoretically represent river basins in a more efficient and realistic way than feedforward networks because of their intrinsic similarity (i.e. both are dynamic systems). However, such theoretical benefits do not always manifest themselves due to shortcomings of the training procedure, as exemplified by the underperformance of the popular BPTT algorithm in this work. The state-of-the-art EKF training approach, on the other hand, produced good results that prove the value of recurrent ANNs over their feedforward counterparts.

The recently introduced, conceptually simple RC models that were the main focus of this study are found to be valid alternatives to feedforward and traditional recurrent ANNs. They show good accuracy and reliability compared to even the best recurrent methods tested. Moreover, since the training problem is simplified to a multiple linear regression problem, faster training times and more insightful models are accomplished.

However, the effectiveness of RC models is strongly dependent on an internal network state that is both sufficiently rich and relevant to the problem at hand. For example, the standard ESN model suffered from poor performance due to its limited instantaneous non-linear capacity. A layered reservoir variation that allows for a both instantaneous non-linear and dynamic mapping, proved far more successful. A second successful reservoir modification proved to be the use of a range of leaky-integrator neurons that enables simultaneous representation of different hydrological time-scales within a reservoir.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

In conclusion, the results of this work suggest that the case for using recurrent connections in ANN R-R models should be reconsidered. The specific architecture of RC models (i.e. separation of the model dynamics simulation and the network training) overcomes several important drawbacks to traditional recurrent methods. This approach can lead to more accurate, reliable, realistic and insightful models.

More research clearly is needed on RC as R-R models, though, in order to further validate the technique's usefulness. Applications on different river basins, scales of space and time, and forecast horizons would increase insights into its effectiveness and reliability. Additionally, there is still a clear need for comprehensive investigations 10 on how to maximize information content in a reservoir, and on which readouts can effectively and efficiently extract such information.

Acknowledgements. The reservoir computing results were obtained using the Reservoir Computing Toolbox for MATLAB, which is offered online by the Reservoir Lab of Ghent University (<http://reslab.elis.ugent.be/>).

15 References

Abrahart, R. J. and See, L. M.: Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments, *Hydrol. Process.*, 14, 2157–2172, 2000. 6102

Anctil, F., Michel, C., Perrin, C., and Andréassian, V.: A soil moisture index as an auxiliary ANN 20 input for stream flow forecasting, *J. Hydrol.*, 286, 155–167, 2004. 6113

ASCE task committee on application of artificial neural networks in hydrology: artificial neural networks in hydrology, II: hydrologic applications, *J. Hydrol. Eng.*, 5, 124–137, 2000. 6118

Atiya, A. F. and Parlos, A. G.: New results on recurrent network training: unifying the algorithms and accelerating convergence, *IEEE T. Neural Netw.*, 11, 697–709, 2000. 6103, 6107

Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with gradient- 25 descent is difficult, *IEEE T. Neural Netw.*, 5, 157–166, 1994. 6108

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

5 Discussion Paper | Reservoir computing as an alternative to traditional ANNs in R-R modelling

10 Discussion Paper | N. J. de Vos

15 Discussion Paper | Title Page

20 Discussion Paper | Abstract Introduction

25 Discussion Paper | Conclusions References

30 Discussion Paper | Tables Figures

Discussion Paper | Back

Close

Discussion Paper | Full Screen / Esc

Discussion Paper | Printer-friendly Version

Discussion Paper | Interactive Discussion

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

Lindström, G., Johansson, B., Persson, M., Gardelin, M., and Bergström, S.: Development and test of the distributed HBV-96 hydrological model, *J. Hydrol.*, 201, 272–288, 1997. 6102

Lukoševičius, M.: Echo state networks with trained feedbacks, *Tech. Report No. 4*, Jacobs University Bremen, 2007. 6117

5 Lukoševičius, M. and Jaeger, H.: Reservoir computing approaches to recurrent neural network training, *Comput. Sci. Rev.*, 3, 127–149, 2009. 6103, 6104, 6108, 6109, 6110, 6117

Maass, W., Natschläger, T., and Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations, *Neural Comput.*, 14, 2531–2560, 2002. 6108

10 Møller, M. F.: A scaled conjugate gradient algorithm for fast supervised learning, *Neural Netw.*, 6, 525–533, 1993. 6106

Puskorius, G. V. and Feldkamp, L. A.: Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks, *IEEE T. Neural Netw.*, 5, 279–297, 1994. 6107

Rumelhart, D. E. and McClelland, J. L.: *Parallel Distributed Processing: Explorations in the Microstructure of Cognition*, vol. 1, MIT Press, Cambridge, 1986. 6106

15 Saad, E. W., Prokhorov, D. V., and Wunsch, I.: Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks, *IEEE T. Neural Netw.*, 9, 1456–1470, 1998. 6103

Shamseldin, A. Y.: Application of a neural network technique to rainfall-runoff modelling, *J. 20 Hydrol.*, 199, 272–294, 1997. 6102

Steil, J. J.: Backpropagation-decorrelation: recurrent learning with $O(N)$ complexity, in: *Proceedings of the IEEE Intl. Joint Conference on Neural Networks*, vol. 2, Budapest, Hungary, 843–848, 2004. 6108

25 Sum, J., Chan, L., Leung, C., and Young, G.: Extended Kalman filter-based pruning method for recurrent neural networks, *Neural Comput.*, 10, 1481–1506, 1998. 6107

Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D.: An experimental unification of reservoir computing methods, *Neural Netw.*, 20, 391–403, 2007. 6108

Werbos, P. J.: Backpropagation through time: what it does and how to do it, *Proc. IEEE*, 78, 1550–1560, 1990. 6107

30 Williams, R. J. and Zipser, D.: A learning algorithm for continually running fully recurrent neural networks, *Neural Comput.*, 1, 270–280, 1989. 6105

Discussion Paper | Discussion Paper

Discussion Paper | Discussion Paper

Discussion Paper | Discussion Paper

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Reservoir computing
as an alternative to
traditional ANNs in
R-R modelling

N. J. de Vos

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
◀	▶
◀	▶
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

Table 1. Overview of MOPEX river basins and their characteristics.

ID	River	Latitude	Longitude	Area (km ²)	Elev. (m)	Soil	Vegetation	Mean annual precip.	Mean annual evap.	Skew- ness Q
B1	S. Branch Potomac	39.4469	-78.6544	3810	171	Loam	Dec. broad leaf	1042	761	16.0
B2	Monocacy	39.3880	-77.3800	2116	71	Silt loam	Dec. broad leaf	1041	896	11.0
B3	Rappahannock	38.3222	-77.5181	4134	17	Clay loam	Mixed forest	1030	920	8.0
B4	Tygart Valley	39.1500	-80.0400	2372	390	Loam	Dec. broad leaf	1166	711	4.2
B5	Bluestone	37.5439	-81.0106	1020	465	Silt clay loam/loam	Dec. broad leaf	1018	741	5.3
B6	East Fork White	39.2000	-85.9256	4421	184	Silt loam/clay loam	Cropland	1015	855	5.2
B7	French Broad	35.6092	-82.5786	2448	594	Loam	Mixed forest	1383	819	4.2
B8	English	41.4664	-91.7156	1484	193	Clay loam	Cropland	893	994	6.9
B9	Spring	37.2456	-94.5661	3015	254	Silt loam/clay loam	Dec. broad leaf	1076	1094	12.5
B10	Amite	30.4639	-90.9903	3315	0	Silt loam	Ever. needleleaf	1564	1073	7.4
B11	Guadelupe	29.8606	-98.3828	3406	289	Clay	Crop/nat. veg.	765	1528	25.6
B12	San Marcos	29.6650	-97.6497	2170	98	Clay	Crop/nat. veg.	827	1449	35.0

- [Title Page](#)
- [Abstract](#) [Introduction](#)
- [Conclusions](#) [References](#)
- [Tables](#) [Figures](#)
- [◀](#) [▶](#)
- [◀](#) [▶](#)
- [Back](#) [Close](#)
- [Full Screen / Esc](#)
- [Printer-friendly Version](#)
- [Interactive Discussion](#)

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Table 2. Overview of the rainfall-runoff models used.

Model	Architecture	Inputs	Network structure	No. of weights	Training method
PM	Persistence model	Q_t	—	—	—
LIN	Multiple linear regression model	$P_{ma,t}, P_{t-2}, P_{t-1}, P_t$, $E_t, Q_{t-2}, Q_{t-1}, Q_t$	—	9	Ridge regression
FF	Feedforward ANN	$P_{ma,t}, P_t, E_t, Q_t$	4–2–1	13	LM
FF _{TDL}	Feedforward ANN w/ tapped-delay lines	$P_{ma,t}, P_{t-2}, P_{t-1}, P_t$, $E_t, Q_{t-2}, Q_{t-1}, Q_t$	8–3–1	31	LM
EL _{BPTT}	Elman recurrent ANN	$P_{ma,t}, P_t, E_t, Q_t$	4–4–1	41	BPTT
EL _{EKF}	Elman recurrent ANN	$P_{ma,t}, P_t, E_t, Q_t$	4–4–1	41	EKF
WZ _{BPTT}	Williams–Zipser fully recurrent ANN	$P_{ma,t}, P_t, E_t, Q_t$	4–4–1	50	BPTT
WZ _{EKF}	Williams–Zipser fully recurrent ANN	$P_{ma,t}, P_t, E_t, Q_t$	4–4–1	50	EKF
RC _{ESN}	Echo State Network	$P_{ma,t}, P_t, E_t, Q_t$	4–200–1	≈ 9205 (205 trained)	Ridge regression
RC _{LESN}	Layered Echo State Network with 2 layers	$P_{ma,t}, P_t, E_t, Q_t$	4–200–1	≈ 9205 (205 trained)	Ridge regression
RC _{LESN-L}	Layered Echo State Network with 2 layers of leaky-integrator neurons	$P_{ma,t}, P_t, E_t, Q_t$	4–200–1	≈ 9205 (205 trained)	Ridge regression

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

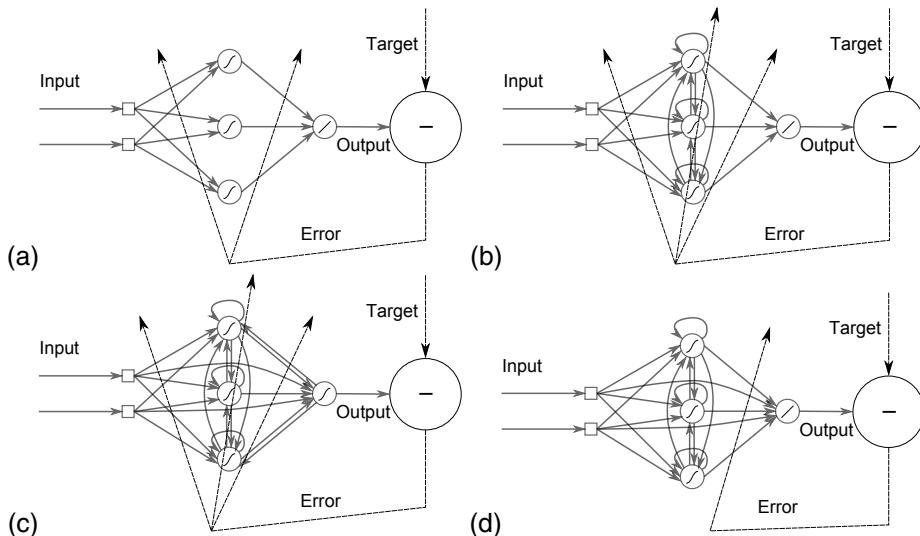


Fig. 1. (a) Feedforward ANN with one hidden layer. (b) Elman recurrent ANN. (c) Williams-Zipser fully recurrent ANN. (d) Echo State Network (here shown with a fully connected reservoir).

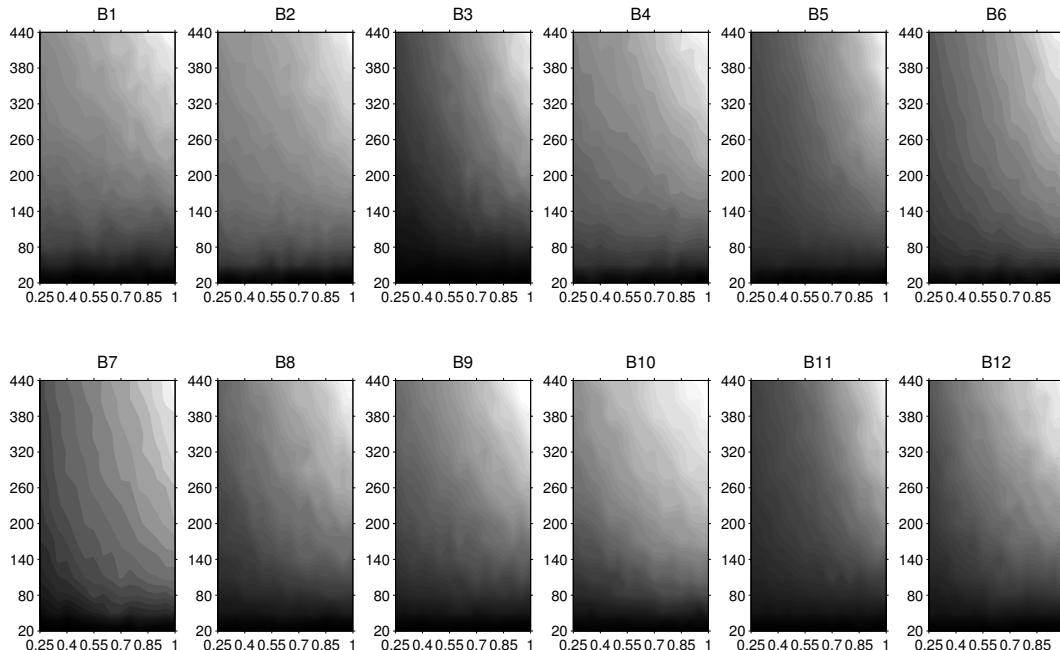


Fig. 2. RC_{ESN} training performance (averaged over 10 runs) over a range of values for the reservoir size (y-axis) and spectral radius (x-axis). Lighter shades represent a low MSE, darker shades a high MSE.

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

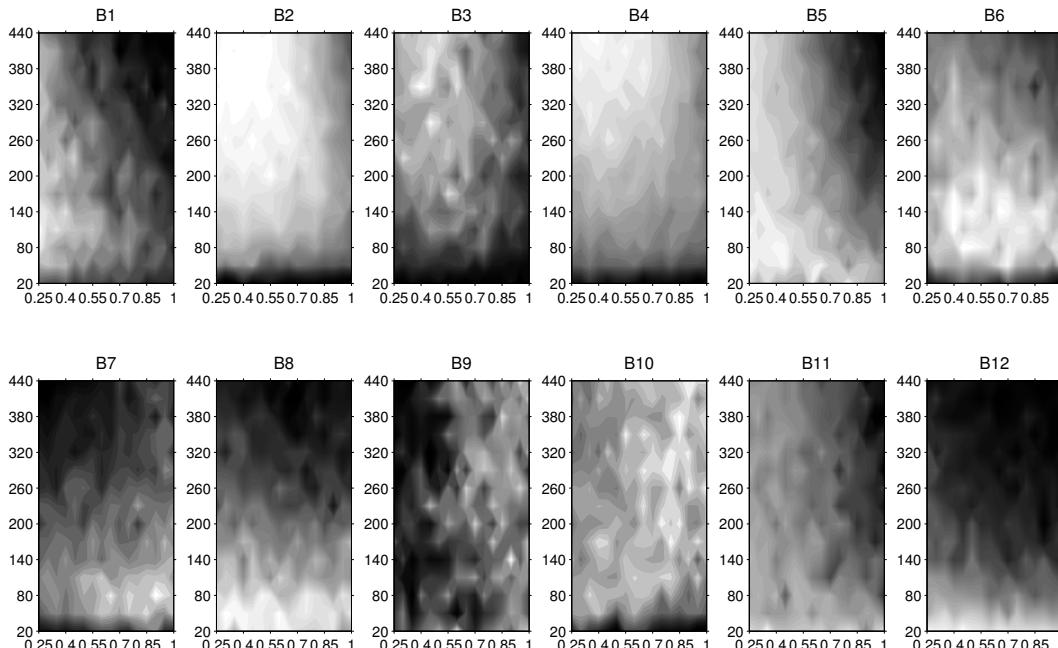


Fig. 3. RC_{ESN} cross-validation performance (averaged over 10 runs) over a range of values for the reservoir size (y-axis) and spectral radius (x-axis). Lighter shades represent a low MSE, darker shades a high MSE.

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

◀

▶

◀

▶

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

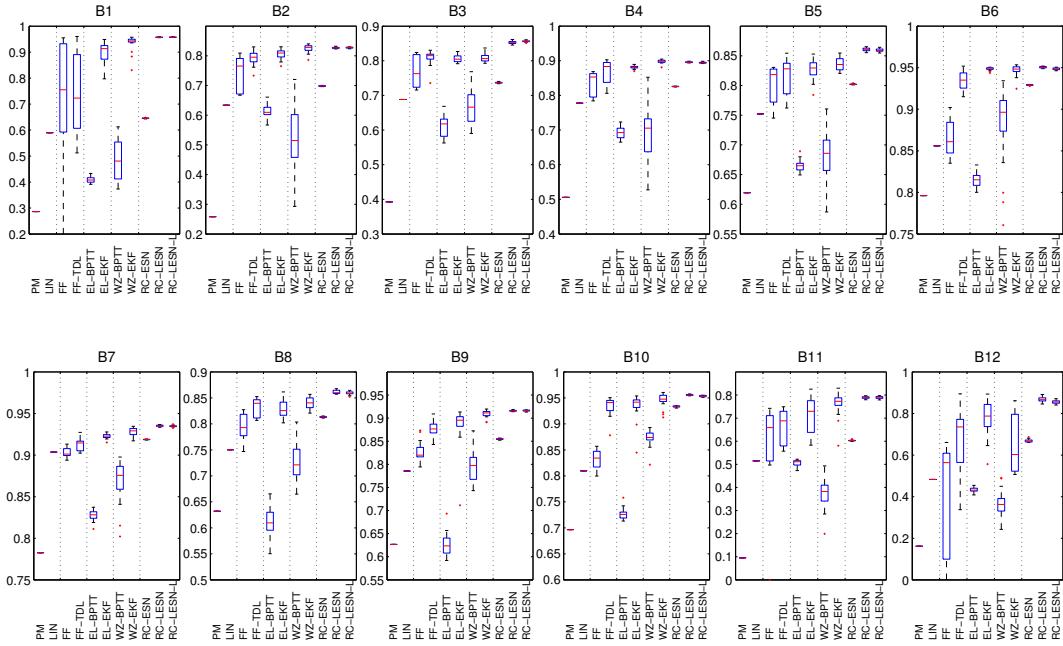


Fig. 4. Training performance in terms of CE.

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

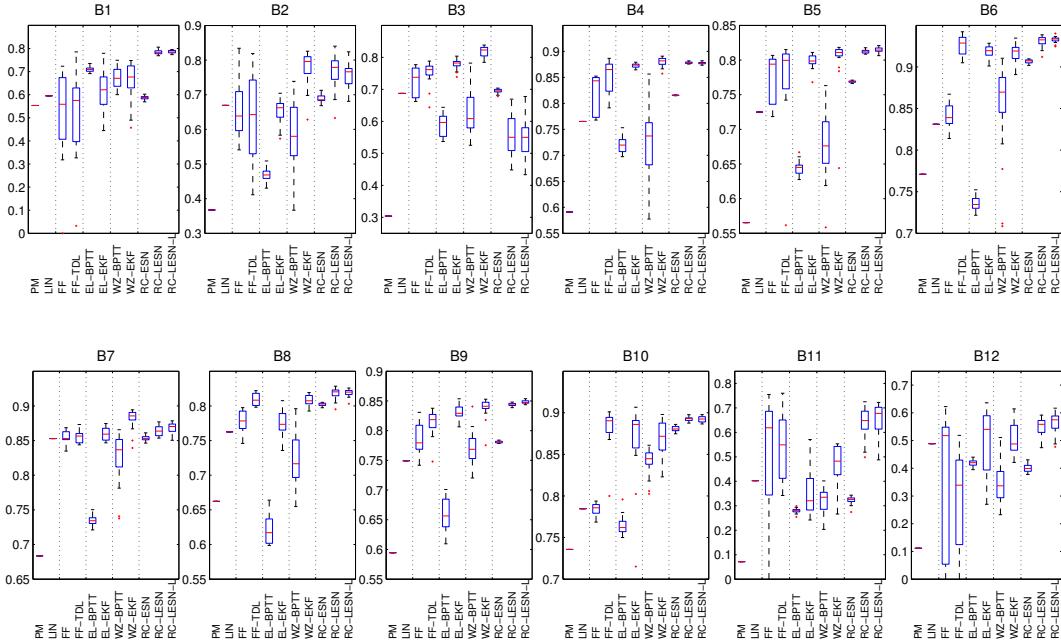


Fig. 5. Test performance in terms of CE.

Title Page

Abstract

Introduction

Conclusions

References

Tables

Figures

Back

Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

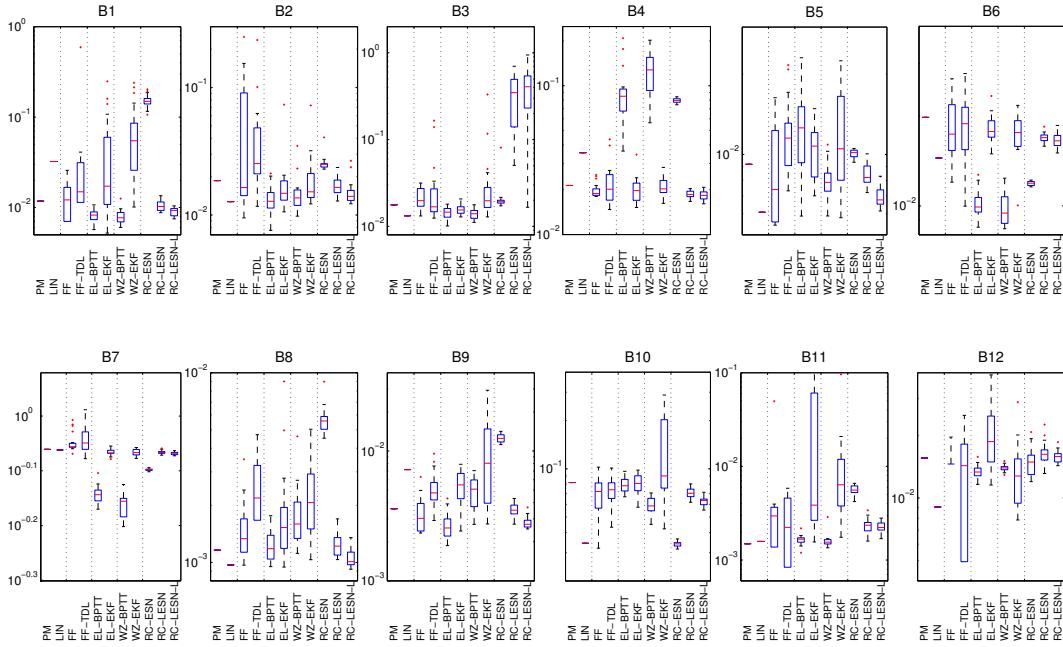


Fig. 6. Test performance in terms of MSE_{p20} .

[Title Page](#)

[Abstract](#)

[Introduction](#)

[Conclusions](#)

[References](#)

[Tables](#)

[Figures](#)

[◀](#)

[▶](#)

[◀](#)

[▶](#)

[Back](#)

[Close](#)

[Full Screen / Esc](#)

[Printer-friendly Version](#)

[Interactive Discussion](#)

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

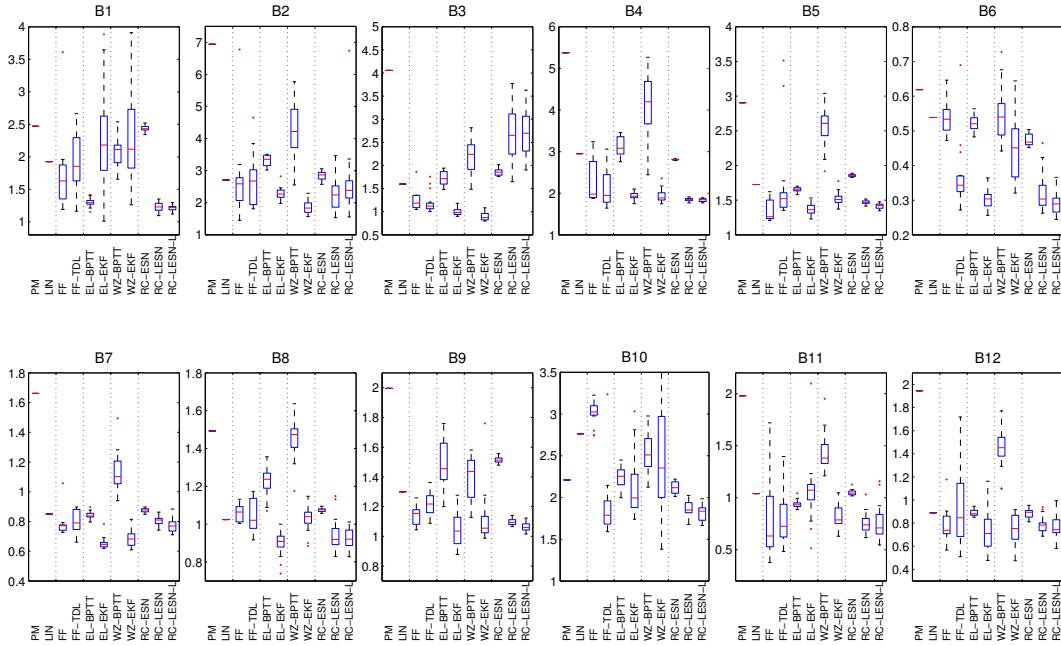


Fig. 7. Test performance in terms of MSDE.

Reservoir computing as an alternative to traditional ANNs in R-R modelling

N. J. de Vos

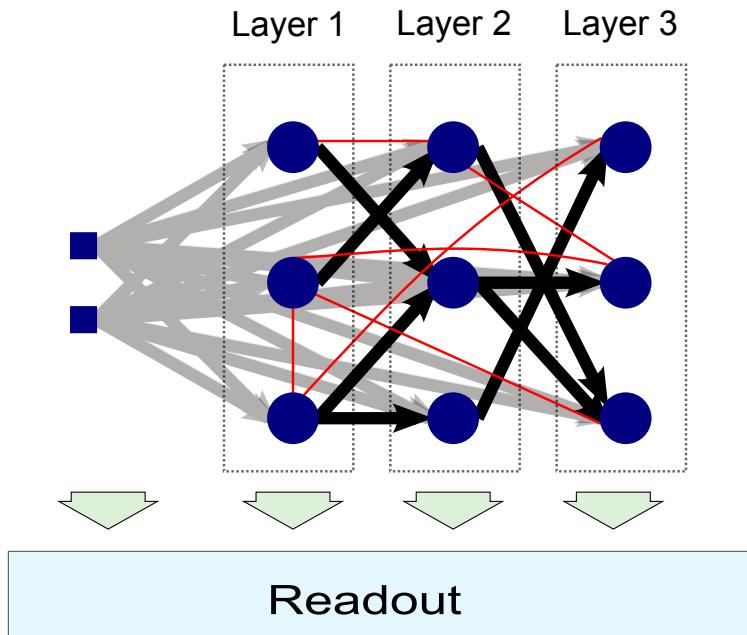


Fig. 8. Architecture of Layered Echo State Network. Thick arrows represent feedforward connections (grey for input-to-reservoir, black between layers), and thin red lines the recurrent connections between layers.

Discussion Paper | Discussion Paper

[Title Page](#) [Abstract](#) [Introduction](#)
[Conclusions](#) [References](#)
[Tables](#) [Figures](#)

[◀](#) [▶](#)
[◀](#) [▶](#)
[Back](#) [Close](#)
[Full Screen / Esc](#)

[Printer-friendly Version](#)
[Interactive Discussion](#)