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Abstract

Despite theoretical benefits of recurrent artificial neural networks over their feedforward
counterparts, it is still unclear whether the former offer practical advantages as rainfall-
runoff models. The main drawback of recurrent networks is the increased complexity
of the training procedure due to their architecture. This work uses recently introduced,
conceptually simple reservoir computing models for one-day-ahead forecasts on twelve
river basins in the Eastern United States, and compares them to a variety of traditional
feedforward and recurrent models. Two modifications on the reservoir computing mod-
els are made to increase the hydrologically relevant information content of their internal
state. The results show that the reservoir computing networks outperform feedforward
networks and are competitive with state-of-the-art recurrent networks, across a range
of performance measures. This, along with their simplicity and ease of training, sug-
gests that reservoir computing models can be considered promising alternatives to
traditional artificial neural networks in rainfall-runoff modelling.

1 Motivation

The development of Rainfall-Runoff (R-R) models that make accurate and reliable pre-
dictions of river streamflow remains among the most important and difficult tasks in hy-
drology. A plethora of methods exist, such as the popular conceptual models which use
simplified descriptions of physical processes. Examples of this approach are the HBV
model (Lindstrom et al., 1997), TOPMODEL (Beven et al., 1995), and the Sacramento
soil moisture accounting model (Burnash, 1995). Because of their flexibility and ease
of use, data-driven methods based on time series analysis, or, more recently, machine
learning methods such as Artificial Neural Networks (ANNs) are increasingly consid-
ered as alternatives (e.g. Hsu et al., 1995; Shamseldin, 1997; Campolo et al., 1999;
Abrahart and See, 2000; Jain and Srinivasulu, 2004; de Vos and Rientjes, 2008b).
Although many investigations of ANNs suggested good performance, their strongly
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empirical, “black-box” nature limits possible applications, and has raised concerns re-
garding their reliability and validity as hydrological models (e.g. Cunge, 2003; de Vos
and Rientjes, 2005).

Most research on ANNs as R-R models has focused on so-called feedforward ANNs,
which perform a static mapping between model input and output. In order to repre-
sent the memory of the system in feedforward ANNs, dynamical properties are com-
monly explicitly modelled by using tapped-delay lines on input variables so that the
input space is expanded to a certain time window. Recurrent ANNs, on the other hand,
have cyclical connections in the structure of the network that allow an implicit, more
parsimonious modelling of dynamical properties. They implement dynamical systems
capable of representing and encoding deeply hidden states in which a network’s output
depends on an arbitrary number of previous inputs, which is why their temporal repre-
sentation capabilities can be better than those of feedforward ANNs with tapped-delay
lines (Saad et al., 1998). Since river basins are dynamic systems, such capabilities
seem to give recurrent ANNs a significant advantage over feedforward ANNs in rep-
resenting a basin’s hydrological state. Indeed they have been successfully tested as
R-R models by, for example, Hsu et al. (1997), Coulibaly et al. (2000), Chang et al.
(2002) and Chiang et al. (2004), but the number of applications using feedforward
ANNs dwarfs those with recurrent ANNs. The main reason for this is that recurrency in
ANNSs causes increased complexity of the training procedure as a result of the cyclical
network connections, and subsequent convergence problems for training algorithms
(Atiya and Parlos, 2000; Lukosevicius and Jaeger, 2009). As such, it is still not fully
clear whether recurrent ANNs, despite theoretical benefits, offer practical advantages
over feedforward ANNs with tapped-delay lines in R-R modelling.

Reservoir Computing (RC) has recently been introduced as an alternative to tra-
ditional recurrent ANNs (Jaeger, 2001). RC commonly involves (1) the generation of
a non-adaptable recurrent ANN whose state maintains a non-linear transformation of
its input history, and (2) the training of a non-recurrent, usually linear, model that ex-
tracts the desired response from the reservoir's state. The training approach of RC
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methods can therefore be notably simpler and faster than the ones traditionally applied
to recurrent ANNs. However, it requires that enough process information is contained in
the reservoir state for the linear method to extract. RC methods has attracted a lot of in-
terest thanks to their fast training times and good performance compared to traditional
methods of system identification, prediction and classification (Hammer et al., 2009;
LukoseviCius and Jaeger, 2009). The RC field is still very young, though, and research
on optimal reservoir design and readout methods is ongoing. Very few applications of
RC in hydrology have been reported thus far. One of them is Coulibaly (2010), who
used a RC model for forecasting monthly water levels of four North-American Great
Lakes. It was shown that this model generally outperformed both a standard recurrent
ANN and a Bayesian neural network model.

This study’s main aim is to find out if RC R-R models can be considered valid alter-
natives to feedforward and traditional recurrent ANN approaches. The performance of
such models is therefore evaluated for one-day-ahead forecasts on a variety of meso-
scale river basins. Secondly, several reservoir design aspects of RC models are in-
vestigated in order to optimize the hydrologically relevant information contained in the
reservoir state, which allows for more accurate and reliable R-R models.

Section 2 briefly reviews feedforward and traditional recurrent ANN models and their
training methods, after which a short introduction to RC is given. Section 3 presents the
data set and model settings used in this work. Results of the experiments are presented
and discussed in Sect. 4, and conclusions are drawn in Sect. 5.

2 Artificial neural networks

2.1 Feedforward versus recurrent networks

As shown in Fig. 1a, feedforward ANNs only have forward network connections be-
tween the network input(s), the hidden layer(s) of neurons and the output neuron(s).
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As such, they can be thought to perform a static function mapping between an input U
and an output Y (see Egs. 1 and 2).

J

Vi = szij"'bk (1)
Jj=1

/
X/=f<zUIWU+b/> (2)
i=1

where J and / are the number of hidden neurons and inputs, respectively, x is the so-
called activation value of a hidden neuron, b is a bias value, w is a connection weight,
and f is a non-linear transfer function.

In order to allow system memory to be incorporated into these static ANN models,
tapped-delay lines are commonly used, which result in a window of historical values
of the variable as input signals (e.g. #;,P;_4,...,P_s). By increasing s, the size of the
input vector and therefore the number of connection weights in the ANN are increased,
making the model less parsimonious.

Recurrent ANNs represent dynamical systems and are able to model more com-
plex temporal relationships. Figure 1b, ¢ shows the two types of traditional recurrent
ANN models that are tested in this work, the EIman network (Elman, 1990) and the
fully recurrent network (Williams and Zipser, 1989). Both networks have cyclical con-
nections in the structure. The Elman network has (besides feedforward connections)
connections from the hidden neurons that loop back to themselves, fully connected,
with a time step delay. The equation for the activation function thus becomes:

/ K
th.=f<ZU/W//-+ZXZ_1ij+bj>. (3)
i=1 k=1
In the Williams-Zipser fully recurrent ANN, the input connects directly to all hidden
and output neurons. The total of hidden and output neurons is fully interconnected with
a time step delay.
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2.2 Training methods

A common approach to ANN training in function approximation applications such as R-
R modelling is to use supervised training. Sample input and output data are presented
to the network, after which optimization algorithms attempt to minimize the error in net-
work output by adjusting the matrix of network weights W. The most popular training
method for feedforward ANNs is the standard backpropagation (BP) algorithm (Rumel-
hart and McLelland, 1986), which uses a first-order gradient-descent method to find
optimal weight values. The objective function E(W) is calculated after which the BP
algorithm applies a correction to the weights in the network:

0E
ow;;

Awj; = -n (4)
where 1 is the learning rate of the BP algorithm. The weight updating corresponds to
moving along the error surface £ (W) in search for a minimum. Weight updates can be
performed every time a single training pattern has been presented (i.e. online mode),
or based on the mean error over all training data (i.e. batch mode).

More sophisticated alternatives to the BP algorithm, such as the Conjugate Gradi-
ent (CG) algorithm and the second-order gradient-descent Levenberg-Marquardt (LM)
algorithm, have been found to commonly outperform in terms of accuracy and conver-
gence speed (e.g. Maller, 1993; Hagan and Menhaj, 1994; de Vos and Rientjes, 2005).
In the LM algorithm, weight updates are performed according to:

Aw = -[H+ul]""Je (5)

where u is a (variable) learning rate, J the Jacobian matrix that contains first derivatives
of the network errors with respect to the weights, e a vector of network errors, and H
an approximation of the Hessian matrix, H = J"J. More information can be found in
(Hagan and Menhaj, 1994).
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Recurrent ANN training has also traditionally relied on gradient-based methods. The
most commonly used algorithm, Backpropagation Through Time (BPTT) is an exten-
sion of the standard BP method (see Werbos, 1990). BPTT also uses a first-order
gradient approach to weight correction. The recurrent connections inside the network
are dealt with by unfolding time iterations of the network into layers, creating an equiv-
alent feedforward network (Atiya and Parlos, 2000). Like BP, weight updates can be
performed in batch mode or online mode. Using the latter, the network unfolding is lim-
ited to a truncation depth to keep the method computationally feasible (Haykin, 1999).

The Extended Kalman Filter (EKF) is a well-known method for non-linear state es-
timation of dynamic systems that also has been successfully used for recurrent ANN
training (Puskorius and Feldkamp, 1994; Sum et al., 1998). Following the notation in
(Haykin, 2001), the dynamics of the recurrent network are modelled as

Wi =W, + @,
Y; = hy(W;,U;,0;_¢) + 0; (6)

where W are the network weights, U the input, ® and v are Gaussian uncorrelated
noises representing process and measurement noise, respectively, and Y is the output,
which is based on a time-dependent function h;. The task of the EKF now becomes to
estimate the perfect weights, given a series of observed outputs. This is done at each
time step through so-called measurement updates of the EKF procedure:

-1
K, =P,H, (%I +H/PH, + Rt)

Wi =W, +Kié;

Pi1=P;— KthTPt +Q (7)
where K is called the Kalman gain, P is the error covariance matrix of the weights,
Q is the covariance matrix of the noise @, R is the covariance matrix of the noise

0, n is a learning rate parameter, ¢ is the difference between observed output and
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output calculated from the previous weight estimate, and H contains the derivatives of
the network output with respect to the weights. The latter can be calculated using the
truncated BPTT procedure mentioned above.

Traditional RNN training using BPTT, or even the sophisticated EKF, suffers from
several shortcomings related to the combination of model complexity and gradient-
based optimization (after LukoSeviCius and Jaeger, 2009):

— Gradual weight updates during the training procedure may drive recurrent net-
works through bifurcations where gradient information becomes useless (Doya,
1992).

— Weight updates can be computationally expensive and many updates may be
necessary.

— Relationships over long-range memory are hard to learn, because the necessary
gradient information exponentially dissolves over time (Bengio et al., 1994).

— Training algorithms require skill and experience to apply, since their complexity
requires a number of global control settings that are not easily optimized.

2.3 Reservoir computing

Reservoir Computing (RC) refers to a group of recurrent ANN methods that shares
certain specific aspects of network design and training that are notably different from
traditional methods. Its primary examples are the independently proposed but re-
cently unified (see Verstraeten et al., 2007) Liquid State Machines (Maass et al.,
2002), Echo State Networks (ESNs) (Jaeger, 2001; Jaeger and Haas, 2004) and the
Backpropagation-Decorrelation learning rule (Steil, 2004). In this work ESNs are used,
which are the simplest, most commonly applied RC methods.

RC involves (1) the generation of the so-called reservoir, a non-adaptable recurrent
ANN whose state maintains a non-linear transformation of its input history, and (2) the
training of a non-recurrent, usually linear, readout that extracts the desired response
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from the reservoir's state (see Fig. 1d for an example RC network). The idea behind
this is that the reservoir contains a representation of current and historical system
dynamics that is rich enough to enable the readout to learn the functional dependence
between system input and output. This approach can be thought of as non-linearly and
temporally expanding the input into a high-dimensional feature vector and then utilizing
those features using linear methods (LukoSevicius and Jaeger, 2009), in the same vein
as methods that rely on kernel expansion (e.g. Support Vector Machines).

A reservoir functions like a regular recurrent ANN, without the requirement that the
neurons are arranged in layers. Its architecture is not strictly defined, and can be
custom-made. It is not formally required, but generally intended that the internal con-
nections induce recurrent pathways between neurons (Jaeger, 2001). Often a large,
sparsely connected reservoir with random weights is used, based on the intuition that
such a network should be able to maintain a rich dynamic state. However, what ex-
actly constitutes rich dynamics in the network’s activation values commonly is not well-
defined and depends on the modelling task at hand. Moreover, because of the strong
coupling between activation values, a reservoir often lacks the ability to represent mul-
tiple time scales simultaneously. To overcome such problems, various variations on
reservoir design have been proposed (see review by LukosevicCius and Jaeger, 2009),
but no sharp guidelines for optimal reservoir design exist as of yet.

A condition called the echo state property is imposed on the reservoir of an ESN,
which states that the effect of previous inputs and states on future states should van-
ish gradually as time passes, and not persist or even get amplified (see Jaeger, 2001;
Buehner and Young, 2006, for details). By scaling the reservoir weight matrix W ac-
cording to its spectral radius (i.e. largest absolute eigenvalue) o(W) < 1, this condition
is generally satisfied. The value of the spectral radius is intimately connected to the in-
trinsic time scale of the dynamics of the reservoir state (Jaeger, 2002). Optimal values
for p(W) thus depend on the degree of non-linearity and memory that a model requires.

Linear readouts are commonly used, which have the advantage that they can be
trained by well-studied and fast linear regression methods. A popular method is ridge
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regression (or: Tikhonov regularization), which is based on the idea of adding an ad-
ditional cost term to the least squares optimization so that the norm of the weights is
kept small. It has been proven successful in improving robustness and generalization of
RC networks (Wyffels et al., 2008). In ridge regression, weight values are determined
according to

W =YX (XX + a21)! (8)

where Y is the target output, X the reservoir state, and a a regularization parameter.

RC methods recently have attracted a lot of research interest because they overcome
several of the training problems of traditional recurrent ANN methods by separating the
simulation of models dynamics and the training of the network. Meanwhile, they offer
excellent modelling accuracy (see review by LukosSeviCius and Jaeger, 2009). Addition-
ally, RC methods seem to be biologically plausible neural network models (especially
LSMs), and they are easily extensible for additional outputs. However, significant re-
search challenges concerning richness of reservoir dynamics, optimal readouts and
(both general and task-specific) model design guidelines remain.

3 Experimental setup
3.1 Data

The model simulations in this work are done on the Model Parameter Estimation Ex-
periment (MOPEX) data set as presented in Duan et al. (2006). This data set includes
daily precipitation, potential evaporation, and discharge data for twelve river basins in
the Eastern United States. Table 1 shows geographical, hydrometeorological and land
surface characteristics of these basins. The skewness of the discharge data is shown
in the last column. High skewness values indicate occurrence of extreme high flow
events.
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The data were split up in training (1979-1990, with the first year for model spin-up),
cross-validation (1991-1998) and test (1960—1979) periods.

3.2 Model input and output

The data used as inputs to the ANN models are time series of daily precipitation (P),
potential evaporation (E), discharge (Q), and the 20-day simple moving average of the
precipitation time series (P,,;). The latter serves as a crude indicator of the wetness in
the basin. Model output is a one-day-ahead forecast of Q.

As explained in Sect. 2, the Elman, fully recurrent and RC networks use only the
latest values of the P, E, Q, and P,,, data as input. Two feedforward models were
constructed, one of which also uses only these latest values of the 4 variables, and
the other used tapped-delay lines. In order to determine the optimal input windows for
these tapped-delay lines, linear correlation and average mutual information between
the input and output time series were calculated. The results suggested that, for all
basins, the information content with respect to Q at time ¢ + 1 is significantly high at
time step t, for £ and £,,,, and at time steps t, through ¢ — 2 for P and Q. This results
in a total of 8 inputs, as shown in Table 2.

All input and output data were standardized to have a mean of 0 and a standard devi-
ation of 1, and the input data were pre-processed using principal component analysis.

3.3 Training settings

The feedforward ANNs were trained in batch mode by the LM algorithm. Standard
backpropagation was tested but not presented here because it performed very poorly
compared to the LM algorithm, most likely due to the first-order gradient algorithm
getting stuck in local optima. The Elman and fully recurrent ANNs were trained online
by both truncated BPTT and EKF (with truncated BPTT for determining the necessary
gradients). BPTT used a window size of 10 and a learning rate of 0.005. For EKF,
a learning rate n of 1 was used, and the covariance matrix P was initialized with values
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of 1000 on the diagonal and 0 elsewhere. The initial matrices for Q and R used values
of 107 and 200, respectively. Before training, feedforward, EIman and fully-recurrent
ANN weights were drawn randomly from a uniform distribution where w € [-0.25,0.25].
The RC network readouts were trained in batch mode by ridge regression (Eq. 8).

A potential pitfall of ANN training is overfitting, which means that the network has
learned the intricacies of the training data, including noise, and thereby has lost its
ability to generalize beyond the specifics of this data. In order to improve their general-
ization capability, training of the feedforward, EIman and fully recurrent models used the
often-applied early-stopping approach, where weight adaptation is stopped when the
error on the cross-validation data starts to increase significantly. The RC models, on
the other hand, rely on regularization by the ridge regression method for good general-
ization ability. Using trial-and-error testing, a good value of the regularization parameter
a (see Eq. 8) was found to be 0.1.

The objective function used for training all ANN models is the Mean Squared Error
(MSE) (Eq. 9).

.
1 A 2
MSE = 7 E(Of -Q,) 9)

where Q is the estimated and Q the observed discharge value.
3.4 Performance evaluation

Model performance is evaluated using the well-known Nash-Sutcliffe coefficient of effi-
ciency (CE, Eq. 10), the MSE over the lowest 20 % of observed flow values (MSE ),
and the Mean Squared Derivative Error (MSDE, Eq. 11). The CE is a scaled variation
of the MSE and stresses fit on peak flows, whereas the MSEp20 focuses on low flows.
The MSDE penalizes errors in hydrograph shape, especially timing errors and noise
(de Vos and Rientjes, 2008b).
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(10)

where Q is the mean discharge value.
T
MSDE = Z((Qt Qr-1) = (@ = Qr_4))%. (11)

As a baseline reference for comparing model performance, a persistence model and
a multiple linear regression model were used. The persistence model merely copies
the last known value of variable Q as its prediction for Q at f + 1, creating a lagged copy
of the original time series. Comparison with this simple model allows for a more strict
and appropriate evaluation of ANN model performance because ANN R-R models have
been shown to be prone to the problem of merely using the last known discharge value
in their prediction (Anctil et al., 2004; de Vos and Rientjes, 2005, 2008a). The multiple
linear regression model is based on the same 8 inputs used for the feedforward model
with tapped-delay lines (see Table 2) and is also calibrated using ridge regression.

3.5 Artificial neural network design

Through a trial-and-error approach, 2 and 3 neurons in a single hidden layer were
found to be optimal for the feedforward ANNs without and with tapped-delay lines,
respectively. Also, bias signals are used in the hidden layer and output layer, bringing
the total number of weights to be trained to 13 and 31. The optimal number of hidden
neurons for the Elman and fully recurrent Williams-Zipser ANNs was determined to
be 4, resulting in 41 and 50 weights, respectively (including bias signals). All ANNs
in this study used the hyperbolic tangent transfer function in the hidden neurons and
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a linear function in the output neurons, except for the fully recurrent ANN which requires
hyperbolic tangent transfer function in all its neurons.

Initial tests suggested that the RC networks performed best if the input signals, a bias
signal with value 1, and the reservoir were all fully and directly connected to the read-
out (as shown in the example in Fig. 1d). The input and bias were also fully connected
to the reservoir. No feedback connections from output to reservoir were used, since
this seemed to deteriorate performance. The weights of the input-to-reservoir connec-
tions determine how strongly a reservoir is excited by input, and thereby the degree of
non-linearity of its response. Here these weights were drawn randomly from a uniform
distribution where w € [-0.1,0.1]. All other connection weights were drawn from a nor-
mal distribution. The common practice of using a sparsely and randomly connected
reservoir is followed, by randomly allowing 20 % of all connections to be active.

The size of the reservoir determines to a large degree the capacity of a network to
learn complex dynamics with reasonable accuracy. Additionally, the spectral radius of
the reservoir weights controls reservoir dynamics and therefore is an important setting
for a RC model (Jaeger, 2002). Figures 2 and 3 show training and cross-validation
performance, respectively, over a range of values for both parameters. The results show
that large reservoirs, especially in combination with large spectral radii, fit the training
data best, generally at the expense of the cross-validation performance. This is an
indication that RC models can be overfitted to the training data (despite regularization
by the ridge regression procedure). A moderate reservoir size of 200 and spectral
radius of 0.6 were chosen for further simulations to avoid such problems. Although
ignored here in order to allow fair comparison with other ANNs, there are sometimes
significant differences between the optimal parameter values for each of the basins,
indicating different system dynamics, complexities, and degrees of overfitting.
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4 Results and discussion
4.1 Model comparison

Figures 3 and 4 show the CE for the training and test data, respectively, for all models
mentioned in Table 2. The overall performance of all ANNs is quite good, judging from
the comparison with the persistence model (PM) and multiple linear regression (LIN)
benchmark models and the relatively high range of CE values (cf. the performances
of various conceptual models in Clark et al. (2008) and Duan et al. (2006), who use
the same data set). Moreover, results are largely consistent between the training and
test data, which means that the models have largely kept their ability to generalize
and are not significantly overfitted. Some river basins (especially B11 and B12) seem
to be difficult to model, judging from the low performance of the PM and LIN models.
This may be because because these catchments are relatively dry (see Table 1) and
suffer more from flash floods (see large skewness of the discharge series in Table 1).
Additionally, extrapolation issues arise, specifically in basins B2, B3 and B11. These all
have one extreme event occur in the test data that falls significantly outside the range
for which the models have been trained, and that attributes significantly to a lower CE.

The feedforward ANNs both generally perform well and did not require a lot of com-
putational effort. Their non-linearity proves to have added value over the LIN model.
However, their spread in performance is often large, which is likely due to the LM algo-
rithm getting stuck in local optima. The tapped-delay lines of the FFp_ network help
performance on several basins (especially B6 and B10), while performance on others
largely stays the same.

The BPTT training algorithm shows poor performance on most basins, both for the
Elman and fully recurrent ANNs. This algorithm was also found to be the slowest of all
algorithms tested. These results confirm the drawbacks of gradient methods for recur-
rent ANNSs, as discussed in Sect. 2.2. EKF, on the other hand proves to be a powerful
training method that generally allows ELgxr and WZgy ¢ to utilize their recurrent archi-
tectures and outperform the feedforward networks. Fully-recurrent ANN architectures
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almost always give better results than Elman architectures, indicating that their added
complexity is warranted.

WZ«r consistently outperforms FFyp, (except on basin B11, which is due to a single
extreme event), suggesting that recurrent ANNs are better models for dealing with
system dynamics than feedforward ANNs with tapped-delay lines. However, WZgr
takes significantly more training time, and the EKF algorithm needs a lot of settings to
be tweaked.

The RCggy model often does not match the performance of the feedforward models,
let alone that of WZgr. The shortcomings of the model that cause this are addressed
below. Despite randomness in its reservoir construction, RCggy performance is more
consistent than any other model. Computational effort was higher than the feedforward
ANNSs, due to the simulation of the reservoir, but significantly less than the other recur-
rent models, thanks to the fast ridge regression training procedure.

Figures 6 and 7, respectively show the MSE,, and MSDE performance for the test
data, allowing for a more rigorous evaluation of the various models. Both fits on low flow
(as judged from the MSE,, values) and hydrograph shape (as judged from the MSDE
values) largely confirm the CE results, indicating reliability of its findings. However,
there seems to be an increased spread in results, which is a result of models focusing
on the objective function (i.e. the MSE) at the cost of model realism as reflected by
deterioration of other performance measures. The RCggy model suffers least from this,
perhaps because of the simplicity of its training procedure.

For some models or algorithms there seems to be a trade-off between performance
measures. The most clear example of this is the performance of BPTT which some-
times scores very well on MSE,,. Apparently, the BPTT algorithms does find its way
to realistic optima that fit low flow well, but is unable to fine-tune to also fit the more
challenging peak flows.
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4.2 Improving reservoir instantaneous non-linear capacity

LukosSevicius (2007) and LukosSevicius and Jaeger (2009) have pointed out that the
traditional ESN architecture can suffer from an inability to produce a non-linear and
instantaneous mapping from input to output. Feedforward, Elman and fully-recurrent
ANNSs all have such ability thanks to feedforward connections through one or more hid-
den layers. Traditional ESN output, however, is a linear combination of model input and
reservoir state. Although a reservoir allows for non-linear transformations of the input,
this signal is mixed with previous values of the reservoir internal state. In the meso-
scale catchments and for a forecast lead time of one day, the ANNs get most of their
information for Q(t + 1) from Q(¢) and P(t), as underlined by the good performance of
the FF model. RCgg)\’s relatively poor performance therefore seems to be attributable
to the lack of a sufficiently non-linear instantaneous mapping of these variables.

A possible solution to this problem was introduced by LukoSeviCius (2007) in the
form of Layered Echo State Networks (LESNs). An LESN'’s reservoir is divided into L
layers with roughly the same amount of neurons, and each time step it is updated layer
by layer. Figure 8 shows the organization of layers and connections inside a LESN,
where the thin lines depict recurrent connections and thick lines feedforward connec-
tions (grey for input-to-reservoir and black for inter-layer connections). At each time
step, the activation values of the neurons in layer 1 are calculated first, based on the
input signals and the delayed recurrent signals from all neurons (i.e. exactly like in
a regular ESN). Subsequent layers’ activation values are calculated from the input, all
previous layers’ present activation values and all recurrent signals. In this way, LESNs
attempts to combine the benefits of feedforward and recurrent connections by allowing
the input signals to propagate forward through multiple layers of neurons during a sin-
gle time step. Increasing L enables more complex instantaneous transformation at the
cost of reduced memory capacity.

By training LESNs with a range of settings for L and evaluating the cross-validation
performance, the optimal number of layers was found to be 2. This low number is not
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surprising given that studies on feedforward ANN R-R have commonly found that using
only a single hidden network layer yielded the best results (ASCE Task Committee on
Application of Artificial Neural Networks in Hydrology, 2000).

Performance of the LESN model with 2 layers (RC ggy) is also shown in Figs. 4 to
7. It clearly outperforms RCggy On both training and test data, proving that the addition
of instantaneous non-linear capabilities is a valuable one. The model also often out-
performs the WZgr model in terms of all performance measures. Moreover, judging
from the competitive and low-spread values for MSE 5, and MSDE, RC ggy is the most
consistent and realistic of the models tested.

4.3 Improving reservoir dynamics

Ever since the introduction of ESNSs, leaky-integrator neurons were suggested for allow-
ing a reservoir to represent slower dynamics (Jaeger, 2001). Leaky-integrator neurons
apply a low-pass filter in the form of an exponential moving average to its activation
values, as shown in Eq. (12) (cf. Eq. 3). The coefficient ¢ € [0, 1] is the decay rate, for
which a value of 1 results in a regular neuron.

/ K
xjt.=(1—c)xj.'1+f<Zu,W,-j+ZXZ‘1ij+bj> (12)

i=1 k=1

The inclusion of slower dynamics in the reservoir using leaky-integrator neurons
could be beneficial to a RC model, considering the broad range of time scales on
which hydrological processes take place. Equation (12) was therefore tested on the
recurrent connections of the LESNs (but not the feedforward connections, as not to
reduce their instantaneous non-linear capabilities). Initial tests showed that good val-
ues for the coefficient ¢ vary between basins due to differences in hydrometeorological
drivers and basin characteristics. Therefore, in order to encompass a range of possible
system dynamics, the 100 neurons of each of the layers of the LESN were assigned
coefficients that were evenly distributed between 0.01 and 1.
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The results of this so-called RC, ggn.. model (see Figs. 4 to 7), show that the leaky-
integrator neurons are moderately successful in increasing the information content of
the reservoir. Performance in terms of CE commonly slightly improved, and the MSE ;5
and MSDE values are consistently lower. The smoothing function of the leaky-integrator
neurons seems to make RC| gg\. @ more reliable model than the RC, ggy model.

5 Conclusions

Recurrent ANNs can theoretically represent river basins in a more efficient and realis-
tic way than feedforward networks because of their intrinsic similarity (i.e. both are dy-
namic systems). However, such theoretical benefits do not always manifest themselves
due to shortcomings of the training procedure, as exemplified by the underperformance
of the popular BPTT algorithm in this work. The state-of-the-art EKF training approach,
on the other hand, produced good results that prove the value of recurrent ANNs over
their feedforward counterparts.

The recently introduced, conceptually simple RC models that were the main focus
of this study are found to be valid alternatives to feedforward and traditional recurrent
ANNSs. They show good accuracy and reliability compared to even the best recurrent
methods tested. Moreover, since the training problem is simplified to a multiple linear
regression problem, faster training times and more insightful models are accomplished.

However, the effectiveness of RC models is strongly dependent on an internal net-
work state that is both sufficiently rich and relevant to the problem at hand. For ex-
ample, the standard ESN model suffered from poor performance due to its limited
instantaneous non-linear capacity. A layered reservoir variation that allows for a both
instantaneous non-linear and dynamic mapping, proved far more successful. A second
successful reservoir modification proved to be the use of a range of leaky-integrator
neurons that enables simultaneous representation of different hydrological time-scales
within a reservoir.
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In conclusion, the results of this work suggest that the case for using recurrent con-
nections in ANN R-R models should be reconsidered. The specific architecture of
RC models (i.e. separation of the model dynamics simulation and the network train-
ing) overcomes several important drawbacks to traditional recurrent methods. This ap-
proach can lead to more accurate, reliable, realistic and insightful models.

More research clearly is needed on RC as R-R models, though, in order to further
validate the technique’s usefulness. Applications on different river basins, scales of
space and time, and forecast horizons would increase insights into its effectiveness
and reliability. Additionally, there is still a clear need for comprehensive investigations
on how to maximize information content in a reservoir, and on which readouts can
effectively and efficiently extract such information.

Acknowledgements. The reservoir computing results were obtained using the Reservoir Com-
puting Toolbox for MATLAB, which is offered online by the Reservoir Lab of Ghent University
(http://reslab.elis.ugent.be/).
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Table 1. Overview of MOPEX river basins and their characteristics.

ID River Latitude Longitude Area Elev. Soil Vegetation Mean  Mean Skew-
(km?)  (m) annual annual  ness

precip.  evap. Q

B1 S. Branch Potomac 39.4469 -78.6544 3810 171 Loam Dec. broad leaf 1042 761 16.0
B2  Monocacy 39.3880 -77.3800 2116 71  Silt loam Dec. broad leaf 1041 896 11.0
B3  Rappahannock 38.3222 -77.5181 4134 17 Clay loam Mixed forest 1030 920 8.0
B4  Tygart Valley 39.1500 -80.0400 2372 390 Loam Dec. broad leaf 1166 71 4.2
B5  Bluestone 37.5439 -81.0106 1020 465 Silt clay loam/loam Dec. broad leaf 1018 741 5.3
B6  East Fork White 39.2000 -85.9256 4421 184 Siltloam/clay loam Cropland 1015 855 5.2
B7 French Broad 35.6092 -82.5786 2448 594 Loam Mixed forest 1383 819 4.2
B8  English 41.4664 -91.7156 1484 193 Clay loam Cropland 893 994 6.9
B9  Spring 37.2456 -94.5661 3015 254 Siltloam/clay loam Dec. broad leaf 1076 1094 125
B10 Amite 30.4639 -90.9903 3315 0 Siltloam Ever. needleleaf 1564 1073 7.4
B11 Guadelupe 29.8606 -98.3828 3406 289 Clay Crop/nat. veg. 765 1528 25.6
B12 San Marcos 29.6650 -97.6497 2170 98 Clay Crop/nat. veg. 827 1449 35.0
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Table 2. Overview of the rainfall-runoff models used.

Model Architecture Inputs Network structure  No. of weights  Training method

PM Persistence model Q; - - -

LIN Multiple linear PratrPro2:Pr1: P 9 Ridge regression
regression model E,Qi_5,Q:_4,Q;

FF Feedforward ANN Proats PrrE Qy 4-2-1 13 LM

FFoL Feedforward ANN w/ PratPr—2:Pr1, Py 8-3-1 31 LM
tapped-delay lines E; Qi 5,Q;_1,Q;

Elgprr Elman recurrent ANN ProatrPiiEr Qy 4-4-1 41 BPTT

Elekr Elman recurrent ANN Prats P Et Qy 4-4-1 41 EKF

WZgprr  Williams—Zipser Prat: PrrEr Qy 4-4-1 50 BPTT
fully recurrent ANN

WZer Williams—Zipser Prats P Er Qy 4-4-1 50 EKF
fully recurrent ANN

RCesn Echo State Network ProatrPiE Qy 4-200-1 ~ 9205 Ridge regression

(205 trained)

RC | esn Layered Echo State Network P, ;,P;, E;, Q; 4-200-1 ~ 9205 Ridge regression
with 2 layers (205 trained)

RCiesn.  Layered Echo State Network P, 1, P, E;, Q; 4-200-1 ~ 9205 Ridge regression
with 2 layers of (205 trained)

leaky-integrator neurons
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(@)

()

Fig. 1. (a) Feedforward ANN with one hidden layer. (b) Elman recurrent ANN. (¢) Williams-
Zipser fully recurrent ANN. (d) Echo State Network (here shown with a fully connected reser-
Voir).
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Fig. 2. RCggy training performance (averaged over 10 runs) over a range of values for the
reservoir size (y-axis) and spectral radius (x-axis). Lighter shades represent a low MSE, darker
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Fig. 3. RCggy cross-validation performance (averaged over 10 runs) over a range of values for
the reservoir size (y-axis) and spectral radius (x-axis). Lighter shades represent a low MSE,

darker shades a high MSE.
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Fig. 8. Architecture of Layered Echo State Network. Thick arrows represent feedforward con-
nections (grey for input-to-reservoir, black between layers), and thin red lines the recurrent
connections between layers.
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